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Topics not included 
(recent papers/theses, open for discussion during this visit) 

1. Turbulent combustion 
2. Turbulent mixing 
3. Inertial Confinement Fusion: UQ  
4. Inertial Confinement Fusion: fluid transport 
5. Short term weather forecasts of cloud cover 
6. Cardiac electrophysiology and fibrillation 
7. An API for Front Tracking 
8. Financial modeling 



K41 and K62 
Kolmogorov’s 1941 scaling law for turbulent kinetic energy is one of the deepest 
contributions to our (imperfect) understanding of turbulence.  
 
 
 
 
 
 
 
 
 
 
Mathematically, K41 can be seen as s Sobolev bound, and on the basis of this as a 
postulate, Lp solutions for the Euler equation can be constructed [CG12] 
 
Kolmogorov 1962 and independently Obkuhov postulated that epsilon is log normal. 
Pope and Chen assumed a (temporal) log normal stochastic process for epsilon. 
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A new scaling law 
A new universality principal 

After adjustment for a (local) mean and time 
scale, every inertial range velocity gradient 
degree of freedom is multiplicatively 
equipartitioned,  i.e., contributes equally to 
the turbulent intensity. 
 
The result is a new scaling law for turbulent 
intensity: 

2 = covariance ln ~ k 



Epsilon 

Epsilon features in many deeper analyses of turbulence 
1.  Scaling laws for the higher velocity moments 
2. Turbulent diffusion 
3. Corrections to the Kolmogorov exponent -5/3 
4. Clustering of particles in particle laden turbulent 

flow 
5. Short distance asymptotics of the two point 

correlation function 
6. Fractal like intermittency for turbulence: turbulent 

regions occupy a fractally smaller fraction of space 
at each smaller length scale. 

 



A Random Field Model for Epsilon 
1. Epsilon is log normal-mixture as a 

random field (dependence on space 
and time) 

2. We do not assume homogeneous 
isotropic turbulence 

3. The theory is thus applicable to 
Large Eddy Simulations (LES), with 
resolved deterministic scales and 
unresolved, stochastic scales. 



A Random Field Model for Epsilon, 
continued 

4. The model has been tested (verified) 
through comparison to Direct Numerical 
Simulation (DNS) for about a decade of 
inertial range turbulent flow. 

5. Resolved scale flow properties set the      
parameters of the model. 

6. An equipartition hypothesis allows    
universal modeling with a simple and 
intuitive parameterization and a new 
power scaling law. 

 
4.    

 
 

 



A Random Field Model for Epsilon, 
continued 

7. Verification through prediction of 
particle clustering in particle laden flow 
will be shown. 

8. The fractal nature of intermittency does 
not result from the model. 

9. To obtain a fractal solution, the model is 
revised within a Renormalization Group 
framework, to decrease the volume of 
active turbulence on each smaller length 
scale. 
 



A Random Field Model 
continued 

10. When so revised, the original 
model serves as a single RNG 
iteration or integration step. 

11. The model universality results 
from the limited range of 
turbulent scales modeled, which 
is sufficient for a single RNG 
step. 



Outline of Presentation 

1. A DNS/LES study of turbulence 
2. The log normal property 
3. Equipartition hypothesis and a scaling law 

in Fourier space; DNS verification 
4. Verification for particle clustering 
5. RNG and extensions to multiple 

unresolved length scales 



1. DNS/LES Turbulence 
 
23 coarse grid LES cells define a resolved cell, 
coarse grid LES velocity gradients. 
Resolved grid = 2 X coarse grid = 8 X fine grid 
 
 
 
 
 
 
H. Pouransari, H. Kolla, J. H. Chen, A. Mani 
Proceedings of Summer program, Center for Turbulence Research, Stanford 
University, 27-36. 2014. 

 
 

Fine grid 
simulationn 

Fine grid Resolved 
coarse grid 

Re Taylor Re Kolmogorov 
scale 

DNS 2563 163 561 40 1.4 Delta 

LES 2563 163 1577 67 0.67 Delta 

LES 2563 163 2539 85 0.04 Delta 



Random process for  



Randomness: choice of resolved space time cell 
Expectation: sum over resolved cells 
Random functions: any subgrid fine grid solution 
Apply to        and          : functions of fine grid 
  depending randomly on resolved cell 
 
Remove effects of resolved grid time scale and 
mean; reduced        is modeled as universal, 
with lognormal statistics 
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2. The log normal property 
We define                   as turbulent intensity. With         lognormal,         is normal. Both 
considered as random functions of the unresolved scales, depending parametrically on 
the resolved scales.  We propose the stochastic equation  

ln   

Equation Parameters 

Resolved scale mean for  

Covariance for  

Resolved time scale for  

Resolved scale DNS cutoff for 

Turbulent eddy viscosity at 
resolved scale 
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Tests for normality of  

A multivariate random variable is Gaussian if 
its inner product with any vector is Gaussian 
 
We choose fine grid mesh values as the test 
vector. 
 
We use QQ plots to assess the univariate 
Gaussian property: Transform the test 
statistic to have unit variance and mean 
zero, apply an inverse Gaussian change of 
coordinates and compare to a straight line. 



QQ plots for 
The log normal property    



Each resolved cell is plotted separately with all fine grid data points within it defining the 
PDF of        All such plots are superimposed here, to show good agreement with the 
Gaussian property up to +- 2 standard deviations. Integral scale Re = 1577. 





3. Universality of subgrid statistics 
 

The purpose of writing the covariance as             
is allow a universal description of   
 
Apply equipartition hypothesis to  
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4. Equipartition hypothesis and a 
scaling law in Fourier space 

 

Expand       in Fourier space, within a single 
resolved cell. Assume        is diagonal and a 
constant multiple of the identity for each 
scalar           .    .  Assume each          
contributes equally to the variance. Then  
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Corrections to scaling law 

1. Corrections for viscous cutoff (eta = Kolmogorov scale) 
 
 
 
 

2. Corrections for interaction with finite sized particles. 
 
 
 

 St = ratio of particle to fluid time scale 
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Model and DNS data compared. 
Error for                     : a few percent  ( )k dk





5. Verification for particle clustering 
 

Particle laden flow.  Assume small (“point”) particles, 
low density, nonineracting upon the fluid or with 
each other. Flow characterized by Stokes number = St  
 
= (fluid-particle equilibration time)/fluid equilibration time 
 

Particle motion from Stokes drag law. But subgrid 
fluctuations contribute to drag, 1st order in dt by Ito 
theory. 



Ito theory and K62 

Model longitudinal fluctuations as proportional to  
Thus log normal (after rescaling).  Stochastic SGS 
model improves clustering property of particles. They 
cluster in regions of low turbulent intensity.  
 
Directional fluctuations: ongoing work 
 
Measure particle clustering by radial distribution 
function 
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Compare coarse grid + stochastic model to DNS 
Left: 3 St numbers; Right: error plot 



Discussion 

St < = 1 looks good.  
St = 4: small inertial range above  
 
For high Re flows, method should be satisfactory 
(to be confirmed) 

p



6. RNG and many unresolved length scales 
 

The theory presented for turbulence 
intensity has been tested over about one 
decade of unresolved scales. 
 
Universality is based on the idea that the 
resolved scales set length and time 
dependent parameters for the 
unresolved scales. 
 
With multiple decades of unresolved 
scales we have a problem. 



The failure of universality 

If universality applies across multiple scales, 
then the information from the resolved 
scales would not be needed, and the theory 
would be globally valid for all turbulent 
flows.  
 
But we see a clear resolved scale 
dependence in T: A strongly vs. weakly 
turbulent resolved region influences all its 
subregions. 



Reformulation of Universality 
The universal theory for statistics of turbulent 
intensity is approximately valid over one change 
of length scales only. 
 
To iterate, and apply to multiple scales, we need 
to reset model parameters, depending on the 
larger scales, after which, the theory of the next 
smaller set of length scales is universal and 
parameterized.  
 

The resetting of parameters is organized as a 
group operation (RNG). 



Fractal properties of solution 
Extreme values of          (small) will necessarily 
occur with finite probability. In these regions, 
the flow will be laminar. Passing to a smaller 
length scale, this region will have laminar 
parameters, and should not be log normal.  
 

Thus a finite fraction of the flow region is 
removed from the turbulent state at each new 
length scale. 
 

Related to fractal models of turbulence. 





Summary Conclusions 

1. The single length scale theory is tested and 
complete. 

2. For multiple length scales, the theory can 
only to applied to the flow region of space 
that is turbulent for the currently resolved 
scales. 

3. The equations close in the sense that all 
parameters are functions of epsilon for 
currently resolved scales. (Use Smagorinsky, 
not dynamic eddy viscosity.) 



Summary, Continued 
4.The universal theory gives parameters for 

the stochastic integration of epsilon for the 
next smaller set of scales. 

5.Monte Carlo (MC) simulation allows 
solution of the multiple scaled theory. 

6.The number of samples does not increase 
with the number of levels. Rather, a fixed 
number of MC realizations will suffice for 
all levels. 

7.Mathematical/numerical properties of the 
multiscale log normal model remain to be 
explored. 
 


